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Abstract

Purpose - Aerodynamic shape optimisation is complex due to the high dimensional-
ity of the problem, the associated non-linearity and its large computational cost. These
three aspects have an impact on the overall time of the design process. To overcome
these challenges, this paper develops a method for transonic aerodynamic design with
dimensionality reduction and multi-fidelity techniques.
Design/methodology/approach - The developed methodology is used for the optimi-
sation of an installed civil ultra-high bypass ratio aero-engine nacelle. As such, the
effects of airframe-engine integration are considered during the optimisation routine.
The active subspace method is applied to reduce the dimensionality of the problem from
32 to 2 design variables with a database compiled with Euler CFD calculations. In the
reduced dimensional space, a co-Kriging model is built to combine Euler lower-fidelity
and RANS higher-fidelity CFD evaluations.
Findings - Relative to a baseline aero-engine nacelle derived from an isolated optimi-
sation process, the proposed method yielded a non-axisymmetric nacelle configuration
with an increment in net vehicle force of 0.65% of the nominal standard net thrust.
Originality - This work investigates the viability of CFD optimisation through a combi-
nation of dimensionality reduction and multi-fidelity method, and demonstrates that the
developed methodology enables the optimisation of complex aerodynamic problems.

Keywords: Optimization, dimensionality reduction, multi-fidelity, active subspace, co-
kriging
Paper type: Research paper
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Nomenclature
Abbreviations

AV Active Variable

BC Boundary Condition

CFD Computational Fluid Dynamics

CNPR Core Nozzle Pressure Ratio

CRM Common Research Model

CST Class Shape Transformation

DoF Degrees of Freedom

DSE Design Space Exploration

FNPR Fan Nozzle Pressure Ratio

GPF Gross Propulsive Force

GTM Generative Topographic Mapping

iCST Intuitive Class Shape Transformation

LHS Latin Hypercube Sampling

MFCR Mass Flow Capture Ratio

NPF Net Propulsive Force

NVF Net Vehicle Force

RANS Reynolds-Averaged Navier Stokes

Greek Symbols

β Boat-tail angle

ψ Azimuthal angle

Roman Symbols

C Chord

CL Lift coefficient

Cp Pressure coefficient

D Nacelle drag

f Non-dimensional factor
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FN Net thrust

L Length

M Mach number

r radius

Subscripts

∞ Freestream

DR Drag rise

hi Highlight

if Initial Forebody

int Intake

is Isentropic

max Maximum radius

nac Nacelle

ref Reference

sep Separation

te Trailing Edge

1. Introduction
To meet the challenging performance targets defined by the Advisory Council for Aviation
Research and Innovation in Europe (ACARE) in Flightpath 2050 (European Commission
2011), novel design and optimisation tools are required. In this respect, methods for quick
aerodynamic shape optimisation will be fundamental to accelerate the overall aircraft de-
sign process and understand the feasibility of novel design concepts. Aerodynamic design
can be specially demanding due to the large number of degrees of freedom considered, the
non-linearity of the problem and the computational cost of the overall process (Skinner &
Zare-Behtash 2018, Targui & Habashi 2022). For this reason emerging techniques such
as dimensionality reduction or multi-fidelity methods are being considered.

A range of dimensionality reduction approaches have been successfully deployed in
the past. Qiu et al. (2018) developed a framework that combined Proper Orthogonal De-
composition (POD) (Kim & Park 2021), to reduce the dimensional space, and a surrogate-
based optimisation approach with a genetic algorithm. The method was deployed for the
optimisation of the transonic RAE2822 airfoil and the transonic ONERA M6 wing. The
number of design variables was reduced from 20 to 10 and from 42 to 20 for the airfoil
and wing case studies, respectively. Relative to baseline geometries, the process yielded
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optimal shapes with a drag reduction of about 13 drag counts and 34 drag counts, respec-
tively. Viswanath et al. (2011) developed the generative topographic mapping (GTM)
dimensionality reduction method, which is based on nonlinear latent variable models. It
aims to transform a high-dimensional space into a low-dimensional latent space. Its capa-
bility for aerodynamic optimisation was tested with a transonic airfoil. The geometry was
controlled with 30 design variables and the dimensionality was reduced to two dimen-
sions after applying GTM. Within the reduced dimensional space an aerodynamic shape
optimisation was carried out. The process provided a configuration with a drag incre-
ment of 8dc compared with a design from an optimisation in the full dimensional space.
However, the GTM approach was 100 times less computationally expensive. Eivazi et al.
(2020) investigated the capabilities of autoencoder networks for dimensionality reduction
and feature extraction. Relative to other methods based on dynamic mode decomposition,
it was found that the proposed approach was able to predict flow-fields with a higher ac-
curacy. The active subspace (AS) technique (Constantine 2015) has been recently used
for the design and optimisation of complex aerodynamic systems in which dimension-
ality reduction is required. It has been deployed for a wide range of applications such
as airfoils (Grey & Constantine 2018), wings (Lukaczyk et al. 2014) or turbomachinery
(Seshadri et al. 2018). Grey and Constantine (Grey & Constantine 2018) deployed the
active subspace to guide the design of a transonic airfoil. The CST parametrisation was
used and 10 design variables were employed to define the shape. It was found that the
lift and drag could be represented with one and two active variables, respectively. As
such, it was concluded that AS is an enabling method to accelerate the design process in
a reduced dimensionality. Lukaczyk et al. (2014) used the active subspace method for the
redesign of the ONERA M6-transonic wing. The aerodynamic shape was parametrised
with 50 Free-Form Deformation (FFD) design variables. The relatively high-dimensional
space was reduced to one and two active variables for the lift and drag, respectively. The
process was used for a lift-constrained drag minimisation study. Relative to the baseline
geometry, a new configuration with approximately 14% drag reduction was identified.

Another challenge of optimisations in high-dimensional spaces is that a large number
of shapes are evaluated in the process (Xie et al. 2022). If the calculations are with higher-
fidelity methods, the overall computational overhead may become prohibitive. For this
reason, multi-fidelity methods have been used in the design of complex systems. Likeng
et al. (2013) used a co-Kriging multi-fidelity approach for the design of a transonic wing-
body configuration at mid-cruise conditions. The low-fidelity data was gathered with a
full potential method and the high-fidelity samples were obtained with RANS CFD. The
optimisation based on these multi-fidelity methods produced a configuration with a reduc-
tion of 16.5% drag coefficient relative to a reference shape. Zhang et al. (2021) developed
a framework for aerodynamic shape optimisation with multi-fidelity deep neural network
surrogate models. The data samples were gathered with RANS CFD evaluations in which
the low- and high-fidelity were obtained with a coarse and fine mesh, respectively. The
tool was deployed for the optimisation of the DLR-F4 wing-body configuration at tran-
sonic conditions. The process identified a configuration with an increase in CL/CD of
18.1% with respect to a baseline geometry.

Relative to conventional in-service aero-engines, it is expected that future civil archi-
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tectures will use higher bypass ratio to lower the specific thrust and increase the propulsive
efficiency (Birch 2000, Xue et al. 2019). This may result in a larger fan diameter and size
of the different housing components. If traditional design rules are applied, there will be
an increase in the wetted area and therefore in the drag and overall weight. For this rea-
son, it is envisaged that the next generation of aero-engines will use compact nacelle and
exhaust systems to retain the benefits from the engine cycles (Daggett et al. 2003). These
new configurations are also likely to be installed in close-coupled installation positions
due to ground clearance and structural requirements. This can result in large installation
penalties that could negate the expected cycle benefits. For this reason, the effect of in-
stallation position should be considered at an early stage of the design process because
it may affect the feasibility of these new architectures. Previous studies have quanti-
fied the impact of powerplant integration on the overall aircraft performance for a wide
range of installation positions. Sibili et al. (2012) investigated the integration of differ-
ent propulsion systems for very high bypass ratio engines. It was found that across the
different installation positions the mission fuel burn could vary up to 3.4%. Stankowski
et al. (2017) assessed the effect of engine installation position, size and power settings on
a typical 300-seater aircraft. For this investigation only engine positions forward of the
wing leading edge were considered. Within the cruise segment, the engine with lower
specific thrust had a 4.8% reduction in fuel burn with respect to a baseline architecture.
Jing et al. (2013) carried out the optimisation of the nacelle/pylon position on a transonic
aircraft. The overall drag was minimised while preserving the targeted lift coefficient
of CL = 0.5. The optimisation process was driven towards forward installation position
which minimised the shock wave strength on the nacelle and pylon inboard side. The
process resulted in a new shape with a reduction of 3.7dc with respect to the original con-
figuration. Tejero, Goulos, MacManus & Sheaf (2020) investigated the effects of aircraft
integration for forward and close-coupled installation positions. The study considered two
different aero-engines configurations in which the nacelle length changed from Lnac/rhi
= 3.8 to 3.1. The study highlighted that the short nacelle (Lnac/rhi=3.1), representative
of a future civil aero-engine, had larger installation penalties than the conventional long
nacelle (Lnac/rhi=3.8). For forward installation positions, the installation penalties were
low and the benefits of the short nacelle that were quantified in isolation were realised.
However, for a more closely-coupled installation the benefits reduced by a factor of about
3.

One of the key contributors to the overall net vehicle force of the aircraft configura-
tion is the nacelle (Tejero, Goulos, MacManus & Sheaf 2020, Goulos et al. 2020). For
this reason, it is required to understand its sensitivity for installed configurations. Al-
though previous studies have considered nacelle design and optimisation for combined
airframe-engine systems, the process was only driven by lower fidelity evaluations. Koc
et al. (2005) optimised the DRL-F6 wing-body-nacelle-pylon configuration with an ad-
joint method using Euler calculations. Overall 82 design variables were used. Relative
to a baseline configuration, the process provided design with 16dc reduction at the same
lift coefficient. Smith et al. (2013) developed an adjoint optimisation framework for the
design optimisation of a wing-body-nacelle-pylon. The routine was also driven by invis-
cid CFD evaluations in which a total of 159 design variables were considered. For the



Aerodynamic Optimisation of Civil Aero-Engine Nacelles by Dimensionality
Reduction and Multi-Fidelity Techniques 6

optimised configuration a method to account for the viscous terms was used to predict
the main aerodynamic characteristics of the integrated system. It was identified that the
adverse flow features that manifest on the inboard side of the nacelle could be mitigated
with the proposed method. It was concluded that until emerging methods for viscous-
flow shape optimisation for complex and high-dimensional problems are developed, the
proposed inviscid shape optimisation approach followed by viscous shape correction was
sufficient to derive representative aerodynamic shapes.

Within the context of future compact civil aero-engine nacelles, there is a clear need
for optimisations that are driven with information from higher CFD fidelities in which the
effects of aircraft integration are considered. However this has not been previously per-
formed due to the large computational cost associated to it. For this reason, it has been a
common practice to carry out isolated nacelle optimisation studies and assess the coupled
aerodynamic performance airframe-engine for the derived configurations. Nonetheless
Ultra High Bypass Ratio (UHBPR) configurations are expected to be installed in close-
coupled positions in which the aerodynamic coupling between both systems will increase.
For this reason, enabling methods for the optimisation of installed configurations are re-
quired. The novelty of this paper is in the development of an optimisation method for
high-dimensional design spaces. The developed approach is applied to design a compact
aero-engine nacelle in which the effects of integration are considered during the optimi-
sation. The investigated problem covers a relatively large dimensional space with more
than 30 design variables. For this reason, a dimensionality reduction technique is used
to accelerate the design process. A database of installed cases is generated using Euler
CFD solutions as lower fidelity upon which the active subspace technique is employed.
In the reduced design space, a range of RANS CFD calculations are performed and a
multi-fidelity co-Kriging approach is used. Whilst the proposed method is used for aero-
engine nacelle design applications, it can be applied for the optimisation of other complex
aerodynamic problems (Millot et al. 2020, Embuena et al. 2018).

2. Methodology
The developed numerical approach for the aerodynamic optimisation of installed turbo-
fan engines extends previous work in the design of civil aero-engines (Tejero, Goulos,
MacManus & Sheaf 2020, Goulos et al. 2020, Rebassa et al. 2020, Sanchez-Moreno
et al. 2022). It has a parametric geometry definition capability based on intuitive Class
Shape Transformation (iCST) functions (Christie et al. 2017) for the design of the nacelle
(Tejero et al. 2021, Tejero, MacManus & Sheaf 2020), intake (Christie et al. 2019), ex-
haust (Goulos et al. 2018) and pylon (Goulos et al. 2020), and automatically creates the
computational domain in which structured prism layer are used near the wall and tetrahe-
dral elements are employed in the rest of mesh. Two different CFD fidelities can be used
during the design process: Euler and RANS (ANSYS FLUENT User’s Guide n.d.). A set
of data-driven techniques guide the optimisation, which include dimensionality reduction
(Constantine 2015), surrogate modelling and a multi-fidelity capability (Baykatar & Tu-
ralioglu 2005). The overall process is coupled with a thrust-drag bookkeeping method
to evaluate the aerodynamic performance for the combined airframe-engine architectures
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(Goulos et al. 2020).
This work uses the NASA CRM as a representative commercial transport aircraft

(Vassberg et al. 2008, Vassberg & et al. 2014). The powerplant is integrated in the same
spanwise location and with the same values of pitch and toe angles as the benchmark
CRM nacelle throughflow configuration (Rivers & Dittberner 2011). Although this study
mainly focuses in the optimisation of the aero-engine nacelle, the other housing compo-
nents have been designed with established methods to alleviate any adverse flow features
across the design space considered (Christie et al. 2019, Goulos et al. 2018, Tejero, Gou-
los, MacManus & Sheaf 2020). The pylon is built by vertically mounting a series of
aerofoil sections (Goulos et al. 2020). The Turbomatch tool (Macmillan 1974) has been
used to derive the engine cycle characteristics. It models the engine cycle to give the
boundary conditions for the exhaust system and was also employed to calculate the by-
pass and nozzle areas.

The intake, nacelle, exhaust and pylon geometries are parametrised with iCST curves.
The nacelle parametric representation uses 7 intuitive design variables to define a sin-
gle 2D aero-line (rhi,Lnac,rte,rif ,fmax, rmax and βnac) (Figure 1). A series of iCST
curves in the cylindrical coordinate system are used to define 3D non-axisymmetric aero-
engine nacelles. The azimuthal variation of each 2D design variable is controlled at
user-prescribed azimuthal angles (Tejero et al. 2021) which results in a 3D parametric
definition of a drooped and scarfed non-axisymmetric aero-engine nacelle (Tejero et al.
2022). The general form of this iCST construction can be employed for fully asymmetric
configurations (Figure 2). For this study 8 aero-lines are controlled in intervals of 45o.
As such, for fixed droop angle, scarf angle, Lnac/rhi and rte/rhi the full 3D geometry is
controlled with 32 degrees of freedom. A detailed description of the iCST parametrisation
has been provided by Tejero et al. (2021).

FIGURE 1: Design variables used to define the aero-engine nacelle

The developed method has a multi-fidelity capability to accelerate the overall design
process. The higher-fidelity CFD data is generated from the viscous and compressible
steady Favre-averaged Navier-Stokes equations (ANSYS FLUENT User’s Guide n.d.) with
the k-ω SST turbulence closure (Menter 1994). The solver uses an implicit scheme and
a density-based approach. The lower-fidelity CFD is based on compressible, inviscid Eu-
ler equations that are solved with a pressure-based algorithm (ANSYS FLUENT User’s
Guide n.d.). A Green-Gauss scheme and a second-order spatial discretization are used for
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FIGURE 2: Powerplant integrated into the NASA CRM and aero-lines controlled to define
the 3D non-axisymmetric nacelle

both fidelities. Kinetic theory is employed to compute the thermal conductivity and the
Sutherland’s law is used to estimate the dynamic viscosity (Sutherland 1893). For both
numerical approaches the aircraft is enclosed in a hemispherical domain located at 100
wing cords as per the guidelines from the 4th AIAA Drag Prediction Workshop (DPW)
(Vassberg & et al. 2014). For the higher-fidelity CFD simulations the first layer height is
adjusted to ensure a y+ below 1 along the full aircraft and the overall cell count is approx-
imately 115 million cells. The numerical validation of the computational approach and
mesh independence studies have been reported by Goulos et al. (2020). For the Euler cal-
culations the boundary layer refinement in the normal direction is eliminated. In addition,
the cell size on the wall in the parallel directions is increased by a factor of around 2. This
resulted in an overall cell count of approximately 20 million which ensured a tractable
capability for a comprehensive design space exploration with this fidelity.

The freestream conditions were set with pressure-farfield boundary condition (BC) in
which the Mach number, the static pressure and the static temperature were specified at the
hemispherical boundary. The intake massflow derived from the user-prescribed MFCR is
controlled with a pressure-outlet condition. The bypass and core nozzle inlets are mod-
elled with a pressure-inlet BC with the total pressure and total temperature obtained from
the 0D engine cycle analysis (Macmillan 1974). A symmetry plane with half-model of
the NASA CRM is used to reduce the overall computational overhead. Whilst non-slip
wall are employed in the powerplant and airframe for the higher-fidelity method, inviscid
walls are set for the Euler calculations.

2.1. Dimensionality reduction: Active subspace method
To collect data across the relatively high-dimensional space considered in this work with
32 design variables, a design space exploration (DSE) based on the computationally ef-
ficient Latin Hypercube Sampling (LHS) technique (Helton & Davis 2003) is used. The
different configurations are evaluated with the lower-fidelity Euler CFD approach to gen-
erate an initial database. With the Euler data from the DSE, the active subspace method
is used to reduce the dimensionality of the optimisation problem. It aims to find a set of
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new variables which are a linear combination of the full design space and can model the
system’s output. The mathematical implementation of the active subspace method follows
the original derivation proposed by Constantine et al. (2014). A brief description of the
method is provided in this section.

A scalar output f is a function of a vector x with n dimensions, f =f (x). The n x n matrix
C, which is the covariance of the gradient across the design space, can be expressed as
follow (Eq. 1):

C = E
[
∇f∇fT

]
(1)

where the gradient vector of∇f is defined as (Eq. 2):

∇f =

[
∂f

∂x1,

∂f

∂x2
, ...,

∂f

∂xn

]
(2)

The matrix of covariance of the gradient across the space (C) can be approximated
with the snapshot method by using M samples (Eq. 3):

C ≈ 1

M

M∑
n=1

∇fi∇fTi (3)

in which ∇fi is the gradient vector of the i sample (Eq. 4):

∇fi = ∇fxi (4)

Having approximated the matrix C, an eigenvalue decomposition can be carried out
(Eq. 5):

C = W ∧WT (5)

where W is the matrix of eigenvectors and ∧ is a diagonal matrix with the eigenval-
ues. The values found in ∧ are in descending order and contain the energy modes of the
identified active subspace directions. Then, the matrix of the active subspace U can be
built. For example, the first column of U can be described as (Eq. 6):

U1 = [w1,1, w2,1, w3,1, ..., wn,1] (6)

where w1...n,1 refers to active variable weights from the first column of the matrix W.
To link the vector at the reduced dimensional space (xas) with the vector of the origi-

nal space (x), the matrix of the active subspace (U ) is used (Eq. 7):

x = Uxas (7)

2.2. Multi-fidelity: co-Kriging
Co-Kriging is the extension of the Gaussian Process Regression (Kriging) method
(Baykatar & Turalioglu 2005, Gong & Ma 2019) for multi-fidelity data. While Kriging
methods rely on a single database of the same fidelity, co-Kriging utilises two sources of
data with different fidelities to improve the prediction on the higher one. These usually
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consist of a large and computationally efficient lower-fidelity (LF) dataset (labelled as
2) that is combined with a reduced and more expensive higher-fidelity (HF) database
(labelled as 1). The objective of co-Kriging is to model the correlation between HF and
LF data to predict the HF function at a reduced computational cost.

The co-Kriging implementation used in this study is based on the work developed
by Han et al. (2010, 2012) and only a summary of the mathematical model is presented.
As with many other response surface models (RSMs), co-Kriging uses a training and
prediction step. In the training process the hyper-parameters of the statistical model are
calculated to represent known data (training dataset), while during the prediction phase
the model evaluates the function at the higher-fidelity model.

In matrix notation, the multi-fidelity prediction function (ŷ1) is dependent on the in-
verse of the correlation matrix (R−1) and the matrices φ, β, ys and F (Han et al. 2010,
2012) that are fitted during the training process (Eq. 8).

ŷ1 = φTβ + rT (x)R−1(ys − Fβ) (8)

The correlation matrix (R) models the correlation between data of the same fidelity
(R11 and R22) as well as the correlation between different fidelities (R12, R21) (Eq. 9).
Rij are assumed to be dependent on the distance between two data points (x − w) and
modelled as a product series of correlation functions (Rk(θkij , x

k
i − wkj )) across the di-

mensionality of the problem (n) (Eq. 10).

R =

(
R11 R12

R21 R22

)
(9)

Rij(θij , xi, wj) =

m∏
k=1

Rk(θ
k
ij , x

k
i − wkj ) (10)

where θkij are the distance weights, which correspond to the key hyper-parameters to
be tuned in the training step, k indicates each of the dimensions of the problem (0 ≤ k ≤
n) and implies that there will be n weight parameters for each combination of i and j.

Within this work, a Gaussian correlation function is considered (Eq. 11).

Rk(θ, x− w) = e−θ(x−w)2 (11)

The values of the hyper-parameters are obtained through the maximisation of the log-
arithmic likelihood function (ln (L(θ11, θ22, θ12))) (Eq. 12). The maximisation of this
function is conducted with a Genetic Algorithm (GA) optimisation method (Tonda 2019).
The implementation of the co-Kriging methodology used in this investigation has been
validated with benchmark functions (Rebassa et al. 2020).

ln (L(θ11, θ22, θ12)) =
1

2

(
(s1 + s2)ln(σ

2
1) + ln(|R|)

)
(12)

where s1 and s2 correspond to the number of high- and low-fidelity training data
samples respectively and σ2

1 refers to the process variance.
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Operating conditions Value
Mach number 0.85

altitude 10668m
MFCR 0.7
FNPR 2.2
CNPR 1.5

TABLE 1
Summary of engine cycle and operating conditions

3. Results and analysis
The installed nacelle aerodynamic shape optimisaton is conducted for mid-cruise condi-
tions with M = 0.85 and the CRM designed lift coefficient of CL = 0.5 (Vassberg et al.
2008, Vassberg & et al. 2014). The aero-engine operates with a bypass ratio larger than
15, which is expected for large turbofans (Epstein 2014), and a nominal standard net thrust
(FN ) of approximately 60kN (Goulos et al. 2016). The values of FNPR and CNPR were
estimated to minimise the specific fuel consumption at design point (Goulos et al. 2018).
The intake was sized to ensure a mass flow capture ratio of MFCR = 0.7 (Tejero et al.
2019). A summary of the engine cycle and operating conditions is presented in Table 1.
This study considers a compact aero-engine nacelle with Lnac/rhi = 3.1 (Tejero et al.
2021).

The numerical analysis and optimisation is performed for an installation position that
is expected for future civil aero-engines. The powerplant is placed in the same wing
spanwise location as the NASA CRM throughflow configuration. The installation position
is defined as an axial (dx) and vertical (dz) offset between the nacelle top-line trailing edge
and the wing leading edge (Tejero, Goulos, MacManus & Sheaf 2020). For this study, the
normalised axial offset was dx/Cwing=0.0 and the normalised vertical offset was set to
dz/Cwing=0.1, where Cwing is the mean chord wing. The metric that is used to drive the
optimisation is the net vehicle force (NVF) (Eq. 13), for which its value is maximised
during the process. It was derived by Goulos el al. (Goulos et al. 2020) as a thrust drag
bookkeeping method to account for the aerodynamic performance of combined engines-
architectures (Goulos et al. 2020, Tejero, Goulos, MacManus & Sheaf 2020).

NV F = NPF −DA/F (13)

where NPF is the powerplant net propulsive force in the drag domain and DA/F

refers to the airframe drag. The net propulsive force (NPF) can be decomposed into Eq.
14:

NPF = GPF ∗ − FG,0 −D∗nac (14)

whereGPF ∗ is the installed modified gross propulsive force, FG,0 refers to the gauge
stream force upstream at infinity and D∗nac is the modified nacelle drag (Goulos et al.
2020, Tejero, Goulos, MacManus & Sheaf 2020).
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The design and optimisation process of the installed aero-engine nacelle starts with a
design space exploration based on a Latin Hypercube Sampling (LHS) (Helton & Davis
2003) at the high dimensional space, i.e. 32 nacelle design variables. Overall, ap-
proximately 800 non-axisymmetric nacelle configurations were evaluated with the lower-
fidelity CFD approach. This provides a ratio of Nsamples/NDoF ≈ 25. The active sub-
space method was used (Section 2.1) and for the performance metric of interest, i.e. NVF,
it was found that there was a reduction of one order of magnitude in the eigenvalues with
the first two active subspace vectors. Similar threshold has been successfully used for
aerodynamic applications in the open literature (Li et al. 2019). As such, the dataset can
be projected in two active variables (AV) to easily identify optimal parts of the design
space in the reduced dimensionality (Figure 3). It can be observed that the active variable
AV1 has a larger influence on NVF across the space than AV2.

FIGURE 3: Projection of the 32 dimensional space into 2 after applying the active sub-
space method. The bounds of the new refined DSE are also marked

The weights (wi) of the active variables (Eq. 6) can be also used to identify which
nacelle variables have a leading impact on the NVF metric. Figure 4 presents the wi for
the azimuthal aero-lines of ψ = 0o, 45o, 90o, 135o and 180o. They are the aero-lines
that define the inboard side of the aero-engine nacelle (Figure 2), which is expected to
have a larger contribution into the net vehicle force for the installed configuration (Tejero,
Goulos, MacManus & Sheaf 2020). For the first AS vector, the greatest weights appear
for rmax at the top-line (ψ = 0o) and in-board side-line (ψ = 90o), and for βnac at the
inboard side-line. Previous nacelle studies for isolated configurations have highlighted
the large impact on nacelle drag of the maximum radius at the top-line due to the strong
shock waves that appear on it (Tejero, MacManus & Sheaf 2020). The active subspace
weights highlight that the inboard side-line (ψ = 90o) is an important driver for the
aerodynamic performance of the aircraft-powerplant configuration. This can be explained
by the effect that both variables (rmax and βnac) can have on the distance between the
inboard side of the nacelle and the airframe, which has an impact on the overall NVF



Aerodynamic Optimisation of Civil Aero-Engine Nacelles by Dimensionality
Reduction and Multi-Fidelity Techniques 13

performance (Goulos et al. 2020). It is also worth highlighting that βnac at ψ = 45o has
a considerable weight on AV1. This variable can be used to control the distance between
the powerplant and the wing and, therefore, has an impact on NVF. Conversely, different
trends are obtained for the weights from AV2. However, this active variable has a smaller
impact on NVF (Figure 3) and its relative effect on NVF with respect to AV1 is reduced.

FIGURE 4: Weights of the 2 first active variables for the aero-lines that define the nacelle
inboard side

Having identified potential regions of maximum NVF in the active subspace (Fig-
ure 3), a new design space exploration was performed in the reduced dimensional space
(Figure 5). In this case, a full factorial of 5x5 was performed and it covered the range
between [1.0 and 3.0] in AV1 and [-0.5,1.5] in AV2, as shown in Figure 3. All the 25
non-axisymmetric nacelles were evaluated with Euler computations and a subset of 13
were assessed with the higher-fidelity RANS method (Figure 5).

The 25 CFD evaluations with the lower-fidelity model resulted in the identification
of an initial optimal configuration derived from the Euler calculations. The design was
located at AV1 ≈ 1.75 and AV2 ≈ 0.6 (Figure 6). This location is based on Euler cal-
culations and the active subspace method. To account for the relative changes across the
design space between fidelities, i.e Euler and RANS, the subset of 13 CFD simulations
were used to generate a co-Kriging (Baykatar & Turalioglu 2005) multi-fidelity model
(Section 2.2) in the reduced dimensional space. This resulted in a slight change of the
optimal part of the design space with AV1 ≈ 2.3 and AV2 ≈ 0.25. This new location is
predicted by combining both the dimensionality reduction and multi-fidelity techniques.
This optimum has a benefit of approximately 0.075%FN with respect to the optimal po-
sition identified by only using the dimensionality reduction method (Figure 6), i.e. the
design at AV1 ≈ 1.75 and AV2 ≈ 0.6.
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FIGURE 5: Refined design space exploration after applying the active subspace method

FIGURE 6: Refined design space exploration. Contour map refers to the Euler prediction
and the lines are iso-lines of the predictions from the co-Kriging multi-fidelity model

To quantify the aerodynamic benefits of designing the aero-engine nacelle with the
developed approach, its aerodynamic performance was compared with a baseline power-
plant. This study uses as reference geometry a 3D non-axisymmetric aero-engine nacelle
derived from an isolated optimisation with the tool developed by Tejero et al. (2019),
Schreiner et al. (2020). Having obtained the powerplant from the isolated optimisation
process, it was installed in the same installation position, i.e. normalised axial offset
of dx/Cwing=0.0 and vertical offset of dz/Cwing=0.1. The NVF changes between both
architectures (optimised isolated and optimised installed) were compared at the higher-
fidelity computational method of RANS. Relative to the baseline architecture, the installed
optimisation yielded an optimal configuration with an improvement in net vehicle force
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(NVF) of 0.65% of the nominal standard net thrust (FN ).
To provide a better insight of the underlying mechanisms for the enhancement ob-

tained with the combined dimensionality reduction and multi-fidelity methods, the con-
stituent metrics of NVF have been analysis (Eq. 13). The normalised difference in the
performance metrics between the nacelle from the developed method and the baseline ge-
ometry is presented in Figure 7. For the nacelle obtained from the developed method there
is a benefit on NPF by 1.05%FN which arises from changes to both the modified gross
propulsive force and nacelle drag (Eq. 14). Although the new installed optimal geometry
has a benefit of 2.18%FN on D∗nac, there is penalty on modified gross propulsive force of
about 1.13%FN . Relative to the baseline installed architecture, the new configuration has
a penalty of airframe drag of 0.4%FN (Figure 7).

FIGURE 7: Breakdown of normalised forces. Difference between the installed optimised
nacelle obtained with the developed method and the baseline configuration

The changes on the installed performance metrics (NV F , NPF , GPF ∗ and D∗nac)
are accompanied by significant differences in the flow topology on the nacelle. Previous
studies (Tejero, Goulos, MacManus & Sheaf 2020, Goulos et al. 2020) have identified
adverse flow features on the aft end of the fancowl inboard-side. This was caused by the
reduced distances between the nacelle and the wing as well as the airframe. It resulted in
a large flow acceleration near the trailing edge that terminated with strong shock waves
which had an adverse impact on the overall installed performance (NVF). The same flow
characteristics have been identified for the baseline geometry for which there is an initial
acceleration around the nacelle lip which terminates in a shock wave and then the flow
accelerates again to supersonic conditions and terminates in a second shock near the trail-
ing edge (Figure 8a). The method developed in this study resulted in a nacelle design that
alleviates this flow features (Figure 8b). For this reason there is a benefit of 2.18%FN
in the modified nacelle drag (D∗nac). It highlights the importance of installed design and
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optimisation for future civil aero-engine configurations.

(A) Baseline (B) Installed optimised

FIGURE 8: Flowfield characteristics on the nacelle inboard side and the CRM wing suc-
tion side

(A) Baseline (B) Installed optimised

FIGURE 9: Flowfield characteristics on the bottom of the aero-engine nacelle and the
CRM wing pressure side

There are also differences on the bottom side of the nacelle and the pressure side of
the wing (Figure 9). For the baseline geometry there is an shock wave at the nacelle
forebody and a second shock at the fancowl aft end (Figure 9a). The installed optimised
configuration presents a more gradual initial flow acceleration around the nacelle lip with
a single shock structure after the nacelle crest (Figure 9b). The powerplant integration
has also a direct impact in the flow characteristics of the wing pressure side. When the
new nacelle configuration obtained with the develop method is installed, there is a more
gradual acceleration of the flow around the wing leading edge which terminates with a
weaker shock than the baseline case. This controlled acceleration results in an increment
of the static pressure on the wing forebody and produces a pressure drag penalty. This



Aerodynamic Optimisation of Civil Aero-Engine Nacelles by Dimensionality
Reduction and Multi-Fidelity Techniques 17

results in an airframe drag (Da/f ) penalty of 0.4%FN (Figure 7).
For the aero-lines with a larger impact on the NV F (Figure 4), the isentropic Mach

number (Mis) distribution between both nacelles is compared to provide a better insight
of the flow characteristics (Figure 10). For the top-line (ψ = 0o) both architectures have
similar flow topology with the same pre-shock Mis and shock location at X/Lnac ≈ 0.2.
The main difference arises in the initial acceleration on the nacelle lip which results in
an increment of about 0.07 on the peak Mis for the installed optimised geometry (Figure
10a). A similar change was identified in the top-control line (ψ = 45o). For this aero-line
the impact of aircraft integration manifests with a flow acceleration at the fancowl aft end
(Figure 10b). This effect is more pronounced in the side line (ψ = 90o) in which for the
baseline configuration there is a noticeable acceleration along the nacelle afterbody with
a peak Mis located at X/Lnac ≈ 0.8. At the same axial location, there is a reduction
of Mis ≈ 0.15 for the installed optimised aero-engine (Figure 10c). For this aero-line
(ψ = 90o) there are also differences in the nacelle forebody flow characteristics. Whilst
the baseline has an initial large acceleration around the lip which terminated with a shock
wave at X/Lnac ≈ 0.15, the installed optimised configuration has a gradual acceleration
in the first 25% of the nacelle length to terminate in a shock wave with similar pre-shock
Mis of the baseline (Figure 10c). For the inboard bottom-control aero-line (ψ = 135o) of
the baseline configuration there is an initial acceleration around the nacelle forebody that
terminates with a shock at X/Lnac ≈ 0.18. Then the flow reaccelerates up to X/Lnac ≈
0.75 to decellerate towards the trailing edge. Conversely, the installed optimised archi-
tecture has a more controlled acceleration around the nacelle lip that terminates with a
similar peak Mis as the reference configuration. After the axial location where the peak
Mis is encountered, the installed optimal configuration has a smooth deacceleration along
the nacelle aero-line (Figure 10d).

4. Conclusions
This article has described a novel approach for the optimisation of complex high dimen-
sional problems. It addresses the viability of CFD optimisation through a combination of
the active subspace dimensionality reduction technique and the co-Kriging multi-fidelity
method.

The approach has been used for the design and optimisation of an installed aero-engine
nacelle. Overall, the method has enabled the successful redesign of a 32 degrees of free-
dom problem. The active subspace method was deployed to reduce the dimensionality
from 32 to 2 design variables. The co-Kriging approach was used in the reduced dimen-
sional space to link Euler evaluations with higher-fidelity RANS calculations. Relative
to a baseline obtained with a current state-of-the-art nacelle design approach, the overall
process yielded a new configuration with an increment in net vehicle force of 0.65% of
the nominal standard net thrust. This was achieved by mitigating the adverse flow fea-
tures that manifest on the aft end of the aero-engine nacelle inboard side. The developed
capability is an enabling method for the design of complex aerodynamic systems.
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(A) Top line (ψ = 0o)

(B) Inboard top-control line (ψ = 45o)

(C) Inboard side line (ψ = 90o)

(D) Inboard bottom-control line (ψ = 135o)

FIGURE 10: Mis comparison for selected nacelle aero-lines
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